Staatsbetrieb Geobasisinformation und Vermessung Sachsen - GeoSN zuständige Stelle nach § 73 BBiG

Abschlussprüfung

Sommer 2015

nach § 37 BBiG und POGIT

im Ausbildungsberuf Vermessungstechniker / Vermessungstechnikerin Fachrichtung Vermessung

Prüfungsbereich:	Geodatenbearbeitung
Kennziffer:	
Lösungsfrist:	150 Minuten
Hilfsmittel:	Rechnerarbeitsplatz für den Bereich grafische Datenverarbeitung Schreib- und Zeichengeräte Taschenrechner (wird bereitgestellt)
Anlagen:	keine
Hinweise:	Eine saubere und übersichtliche Darstellung wird mit bewertet. Rechnerarbeitsplatz steht für Aufgabe 4 zur Verfügung
Aufgaben:	4 Aufgaben
	Die Anzahl der Zusatzblätter beträgt:

Aufgabe 1

Sachverhalt

Aus den Medien haben Sie von der schiefen Oberkirche in Bad Frankenhausen erfahren (Bild). Auch in Bautzen steht ein schiefer Turm, viele Menschen kennen den schiefen Turm von Pisa. Im Gespräch mit Bekannten werden hierzu viele Fragen angesprochen, zu denen Sie als angehender Vermessungstechniker gerne Auskunft geben. Sie recherchieren einige Informationen im Internet und erläutern, wie Sie als Messtruppführer eine Messungsanordnung zur Koordinatenbestimmung der Turmspitze gestalten.

Tabelle Zusammenstellung

(Quellen: www.wikipedia.de, tools.wmflabs.org/GeoHack)

	Kirche Bad Franken- hausen (Sachsen-Anhalt, Stand 2013)	Reichenturm (Bautzen, Sachsen)	Schiefer Turm von Pisa (Italien, Stand 2011)
Abweichung der Turmspitze vom Lot	4,76°		3,97°
Abweichung der Turmspitze vom Lotfußpunkt		1,44 m	
Höhe des Turms	56 m	56 m	56 m
Koordinaten WGS84	51° 21′ 34″ N 11° 06′ 20″ O	51° 10′ 52″ N 14° 25′ 38″ O	43° 43′ 23″ N 10° 23′ 47″ O
Koordinaten UTM	32U 646594 5691902	33U 459974 5670114	32T 612468 4842056

Kartenausschnitt Bautzen

Aufgaben

- 1.1 Berechnen Sie die drei fehlenden Angaben der Tabelle Zusammenstellung und tragen Sie diese dort ein.
- 1.2 Die im Internet gefundenen Koordinaten liegen im WGS84 vor. Wofür steht die Abkürzung und wie werden die Koordinaten genannt (vollständige Bezeichnung)?

1.3 Rechnen Sie die WGS84-Koordinaten des Reichenturms (Bautzen, Sachsen) zur Übernahme in ein Navigationsgerät in das Dezimalsystem um.

- 1.4 Für alle Punkte liegen auch UTM Koordinaten vor. Wofür steht die Abkürzung?
- 1.5 Skizzieren Sie die Lage des Reichenturms (Bautzen, Sachsen) im Koordinatensystem der entsprechenden UTM-Zone und beschriften Sie die Elemente in der Skizze.

1.6 Welche sieben Angaben sind für eine Datumsfestlegung eines Lagereferenzsystems erforderlich?

1.7 Zeichnen Sie im vorliegenden **Kartenausschnitt Bautzen** ein, welche Messwerte Sie bestimmen, um die Koordinaten der Turmspitze zu berechnen. Die dargestellten bekannten Punkte sind zueinander sichtbar. Beschriften Sie die Bestimmungselemente. Wie wird das geodätische Messverfahren genannt?

Aufgabe 2

Sachverhalt

Ihr Vermessungsbüro erhielt den Auftrag den Kinderspielplatz der Gemeinde zwecks Erneuerung aufzumessen. Anhand des Entwurfs wurden die zwei Punkte SP1 und SP2 vermarkt und mittels DGNSS koordiniert. Die Koordinaten der beiden Punkte liegen im RD83 vor.

Sie bearbeiten den Auftrag vor Ort sowie mit einem CAD-Programm im Innendienst und sind Ansprechpartner für die Gemeinde. Diese möchte den Spielplatz auch auf ihrer Webseite interaktiv präsentieren und vor Ort eine Schautafel aufstellen, wozu sie Farb- und Größeninformationen definiert haben möchte.

Sie stellen hierzu erforderliche Informationen zusammen.

Skizze

Koordinaten

Pkt.Nr.	R (m)	H (m)
SP1	5412896.795	5657579.142
SP2	5412875.687	5657518.738

Auszug aus der Datei plotter.pen

*	
* FA Farbendefinition *	Hinweis:
* Format: * FA Nr System C1 C2 C3 *	beginnend Datei sind
* Variable Bedeutung zulässige Werte	und diener
* Nr Nummer der Farbe 1-10000	
* System Farbsystem RGB, CYM, HLS *	
* RGB -C1Rotanteil0-SPMODE*C2Gruenanteil0-SPMODE*C3Blauanteil0-SPMODE	
* *	(Definition
* nr system C1 C2 C3 * Kommentar	für Plotter
FA 1 RGB 255.0 0.0 0.0 * Rot FA 9 RGB 130.0 255.0 130.0 * HellGruen FA 10 RGB 130.0 130.0 255.0 * HellBlau	Firma HH

Hinweis: Alle mit einem Stern (*) beginnenden Zeilen in der Datei sind Kommentarzeilen und dienen der Erläuterung.

Definition der Stiftfarben ür Plotter Quelle: Software GEOgraf – Firma HHK Datentechnik)

Aufgaben

2.1 Wofür stehen die Abkürzungen DGNSS und CAD?

2.2 Welche wesentlichen Voraussetzungen sind zur Koordinatenbestimmung mittels DGNSS erforderlich?

2.3 In Deutschland können zukünftig drei GNSS eingesetzt werden. Wie werden die drei genannt?

2.4 Welche Aussage liefert der DOP Wert beim GNSS und wovon ist er abhängig?

2.5 Das Bild der Schautafel soll maximal 1,5 Meter breit sein. Welchen runden Maßstab schlagen Sie der Gemeinde für diese Abbildung des Spielplatzes zweckmäßigerweise vor? 2.6 Tragen Sie in der Skizze Entwurf einen Nordpfeil ein. 2.7 Rechnen Sie für die Webpräsentation die Farben FA1, FA9 und FA10 in Hexadezimalzahlen um.

2.8 Mit wie viel Bit wird ein Farbpixel gemäß Darstellung in der plotter.pen codiert?

Aufgabe 3

Sachverhalt

Aus dem Vermessungsauftrag "GIS-Uluan-Park" liegen über 650 koordinierte Punkte in einem lokalen System vor. Ihr Vorgesetzter beauftragt Sie, die Punkte in das Landeskoordinatensystem zu transformieren. Sie verwenden zur Datenaufbereitung die Datenbanksprache SQL (bzw. mySQL). Die im Jahr 2015 neu bestimmten Punkte sollen eigenständig weiter verarbeitet und deshalb aus der Datei gefiltert werden.

Auszug aus der Tabelle "Koordinaten"

Aufgaben

Nr.	y (m)	x (m)	H (m)	bestimmt am
6001	-17,857	10008,50%	114,750	09 17 203 4
6000	5066,792	9999,377	114,375	06.01.2015
5001	5096,132	10115,762	114,295	03.12.2014
5000	5098,600	10230,583	114,315	03.12.2014
4005	5059,339	10294,301	114,546	03.12.2014
4004	5063,409	10295,385	114,586	03.12.2014
4003	5086,634	10298,266	114,468	06.01.2015
4002	5 <mark>1</mark> 15,251	10307,069	114,177	03.12.2014
4001	5085,759	10353,640	114,595	06.01.2015
4000	5119,236	10383,412	114,173	06.01.2015
100000	4971,225	10195,377	114,468	05.08.2010
3001	4999,594	10363,741	114,357	03.12.2014
100001	4972,108	10195,349	114,468	05.08.2010
2002	5049,431	10197,959	114,727	06.01.2015
2001	4993,478	10185,507	114,240	03.12.2014
1005	5006,237	10122,728	114,282	03.12.2014
201	5003,859	10093,706	114,196	03.12.2014
H1002	4987,732	10029,989	114,081	06.01.2015
H1001	4996,410	10003,346	114,282	06.01.2015
805	5114,133	10109,449	114,284	06.01.2015
804	5098,951	10114,178	114,125	03.12.2014
803	4996,831	10253,996	114,191	03.12.2014
802	5007,820	10142,964	114,251	06.01.2015
714	4999,982	10389,105	114,442	06.01.2015
713	4995,764	10298/137	T11310	OE.IL.2015

- 3.1 Erstellen Sie eine SQL-Abfrage (SELECT-Anfrage), welche alle Koordinatendatensätze aus dem Jahr 2015 liefert, wenn das Datenfeld "bestimmt am" vom Felddatentyp "Datum" ist.
- 3.2 Erstellen Sie eine weitere SQL-Abfrage, welche alle Koordinatendatensätze aus dem Jahr 2015 liefert, wenn das Datenfeld "bestimmt am" vom Felddatentyp "Text" ist.

3.3 Mit welcher SQL-Abfrage über alle Datensätze ermitteln Sie die kleinste Höhe?

3.4 Welche mathematischen Voraussetzungen benötigen Sie mindestens, wenn Sie die Transformation in das Landeskoordinatensystem durchführen wollen?

Sachverhalt

Eine Rohrleitung mit einem Durchmesser von 1000 mm liegt mittig und bündig auf der Grabensohle eines Grabens. Die Breite der Grabensohle ist mit 160 cm festgelegt. Am Anfang und Ende der Rohrleitung befindet sich die Böschungsunterkante direkt am Rohrende. Wegen der Standfestigkeit des Grabens wurde eine Böschungsneigung von 45° festgelegt.

Die Geländehöhe der Grabenoberkante beträgt im Bereich des Grabens 134,00 m über NHN. Ein Vermessungsbüro hat die Oberkante der Leitung an den Knickpunkten mittig nach Lage und Höhe bestimmt.

Aufgaben

4.1 Kopieren Sie den Ordner

K:/Vermessung/Pruefung2015/Volumenbestimmung_Graben/ in Ihr Home-Verzeichnis (*H:/Pruefung2015/ Volumenbestimmung_Graben/*). Dieser Ordner enthält das GEOgraf-Projekt "Volumenbestimmung Graben" mit den zugehörigen Arten- und Symboldateien sowie die Ergebnisse der Bestandsmessung mit dem Dateinamen *messpunkte.pkt*.

- 4.2 Öffnen Sie das Projekt und lesen Sie die Bestandsmessung ein.
- 4.3 Konstruieren Sie die Rohrleitung und den Graben nach den Vorgaben des Sachverhaltes und erzeugen Sie eine Böschungsschraffur.
- 4.4 Beschriften Sie die Leitung mit den tatsächlichen Rohrlängen an den gemessenen Punkten und den jeweiligen Rohrneigungen.
- 4.5 Berechnen Sie die Erdmengen, die für die Verfüllung des Grabens benötigt werden auf volle Kubikmeter genau.
- 4.6 Tragen Sie Ihre Ergebnisse in die bereitgestellte Tabelle **ergebnisse.xlsx** ein.
- 4.7 Erzeugen Sie eine Plotbox mit dem Format B: 38 cm x H: 25,7 cm und speichern Sie diese unter dem Namen "projekt" ab.
- 4.8 Erzeugen Sie innerhalb der Plotbox rechts oben mit der Textart 1 die Textzeilen folgenden Inhalts:

Kennziffer:	
Datum:	
Maßstab:	
Höhensystem:	

4.9 Erzeugen Sie als Ergebnis Ihrer Arbeit eine Zeichnung in einer Papiergröße A3 als pdf-Datei mit dem Namen volumen.pdf. Beim Erstellen der Plotdatei fügen Sie die Datei ergebnisse.xlsx an geeigneter Stelle ein. Speichern Sie die pdf-Datei im Pfad H:/Pruefung2015/Ergebnisse/.